AI TOOLS LAB

Course Code	19ES1451	Year	II	Semester	II
Course Category	Engineering Sciences	Branch	ME	Course Type	Practical
Credits	1	L-T-P	0 - 0 - 2	Prerequisites	Problem solving with python
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total Marks	75

Course Outcomes					
After successful completion of the course, the student will be able to					
CO1	Apply various preprocessing techniques and Machine Learning/ Deep Learning methods on different datasets for a given problem.	L3			
CO2	Implement various experiments in Jupyter Notebook Environment.	L3			
CO3	Develop an effective report based on various learning methods implemented.	L3			
CO4	Apply technical knowledge for a given scenario and express with an effective oral communication.	L3			
CO5	Analyze the outputs and visualizations generated for different datasets.	L4			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PS								PSO2				
CO1	3										2	1	
CO2					2				2		1	1	
CO3										2		2	
CO4	3									1		1	
CO5		3										2	

	Syllabus						
Expt. No	Contents	Mapped CO					
1.	Apply Data pre-processing techniques.	CO1, CO2, CO3, CO4, CO5					
2.	Construct a Machine Learning model using supervised learning method.	CO1, CO2, CO3, CO4, CO5					
3.	Construct a Machine Learning model using Unsupervised learning method.	CO1, CO2, CO3, CO4, CO5					
4.	Construct a Machine Learning model using Semi supervised learning method.	CO1, CO2, CO3, CO4, CO5					
5.	Develop a Deep Learning model using supervised learning method.	CO1, CO2, CO3, CO4, CO5					

Department of Mechanical Engineering

PVP 19

6	6.	Develop a Deep Learning model using Unsupervised learning method.	CO1, CO2, CO3, CO4, CO5
7	7.	Apply a Convolutional Neural Network for Image Classification.	CO1, CO2, CO3, CO4, CO5
8	8.	Build an AI application.	CO1, CO2, CO3, CO4, CO5

Learning Recourse(s)

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015, Pearson Education.
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- 3. Deep Learning (Adaptive Computation and Machine Learning series), Ian Good fellow, Yoshua Bengio, Aaron Courville, <u>Francis Bach</u>, 2017, MIT Press

e- Resources & other digital material

- 1. https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford
- 2. https://github.com/Kulbear/deep-learning-coursera